Exploring soybean metabolic pathways based on probabilistic graphical model and knowledge-based methods

نویسندگان

  • Jie Hou
  • Gary Stacey
  • Jianlin Cheng
چکیده

Soybean (Glycine max) is a major source of vegetable oil and protein for both animal and human consumption. The completion of soybean genome sequence led to a number of transcriptomic studies (RNA-seq), which provide a resource for gene discovery and functional analysis. Several data-driven (e.g., based on gene expression data) and knowledge-based (e.g., predictions of molecular interactions) methods have been proposed and implemented. In order to better understand gene relationships and protein interactions, we applied probabilistic graphical methods, based on Bayesian network and knowledgebase constraints using gene expression data to reconstruct soybean metabolic pathways. The results show that this method can predict new relationships between genes, improving on traditional reference pathway maps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of metabolic pathways by combining probabilistic graphical model-based and knowledge-based methods

Automatic reconstruction of metabolic pathways for an organism from genomics and transcriptomics data has been a challenging and important problem in bioinformatics. Traditionally, known reference pathways can be mapped into an organism-specific ones based on its genome annotation and protein homology. However, this simple knowledge-based mapping method might produce incomplete pathways and gen...

متن کامل

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

Knowledge Sharing Behavior Model of Iranian Professionals in experts’ social networks: exploring indexes

Background and Aim: Due to the extensive use of knowledge intelligence, the future of countries depend on the application of specialized knowledge-based social networks. Thus, it is noteworthy to highlight the important role of the professionals. The key indicators of a model for knowledge sharing of Iranian experts, in experts’ social networks has been identified. Methods: For this purpose, ex...

متن کامل

Using Bayesian Networks as an Inference Engine in KAMET

During the past decades, many methods have been developed for the creation of Knowledge-Based Systems (KBS). For these methods, probabilistic networks have shown to be an important tool to work with probability-measured uncertainty. However, quality of probabilistic networks depends on a correct knowledge acquisition and modelation. KAMET1is a model-based methodology designed to manage knowledg...

متن کامل

A Disease Classifier for Metabolic Profiles Based on Metabolic Pathway

This thesis presents Pathway Informed Analysis (PIA), a classification method for predicting disease states (diagnosis) from metabolic profile measurements that incorporates biological knowledge in the form of metabolic pathways. A metabolic pathway describes a set of chemical reactions that perform a specific biological function. A significant amount of biological knowledge produced by efforts...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015